
Introduction

 Storage class in C

 Automatic variables

 External variables

 Static variables

 Register variables

Few terms
2

1. Scope: the scope of a variable determines over what

part(s) of the program a variable is actually available

for use(active).

2. Longevity: it refers to the period during which a

variables retains a given value during execution of a

program(alive)

3. Local(internal) variables: are those which are declared

within a particular function.

4. Global(external) variables: are those which are

declared outside any function.

Automatic variables
3

 Are declare inside a function in which they are to be
utilized.

 Are declared using a keyword auto.

 eg. auto int number;

 Are created when the function is called and destroyed
automatically when the function is exited.

 This variable are therefore private(local) to the function
in which they are declared.

 Variables declared inside a function without storage
class specification is, by default, an automatic variable.

Example program

4

int main()
{ int m=1000;
 function2();
 printf(“%d\n”,m);
}
function1()
{
 int m = 10;
 printf(“%d\n”,m);
}
function2()
{ int m = 100;
 function1();
 printf(“%d\n”,m);
}

Output
10
100
1000

Few observation abt auto variables

5

 Any variable local to main will normally live throughout the

whole program, although it is active only in main.

 During recursion, the nested variables are unique auto

variables.

 Automatic variables can also be defined within blocks. In that

case they are meaningful only inside the blocks where they

are declared.

 If automatic variables are not initialized they will contain

garbage.

External Variables

6 These variables are declared outside any function.

 These variables are active and alive throughout the entire program.

 Also known as global variables and default value is zero.

 Unlike local variables they are accessed by any function in the program.

 In case local variable and global variable have the same name, the
local variable will have precedence over the global one.

 Sometimes the keyword extern used to declare these variable.

 It is visible only from the point of declaration to the end of the program.

External variable (examples)

7 int number;

float length=7.5;

main()

{ . . .

 . . .

}

funtion1()

{. . .

 . . .

}

funtion1()

{. . .

 . . .

}

int count;
main()
{count=10;
 . . .
 . . .
}
funtion()
{int count=0;
 . . .
 . . .
 count=count+1;
}

The variable number and length

are available for use in all three

function

When the function references the

variable count, it will be referencing

only its local variable, not the global

one.

Global variable example

8 int x;
int main()
 {
 x=10;
 printf(“x=%d\n”,x);
 printf(“x=%d\n”,fun1());
 printf(“x=%d\n”,fun2());
 printf(“x=%d\n”,fun3());
 }
int fun1()
 { x=x+10;
 return(x);
 }
 int fun2()
 { int x
 x=1;
 return(x);
 }

int fun3()
 {
 x=x+10;
 return(x);
 }

Once a variable has been declared

global any function can use it and

change its value. The subsequent

functions can then reference only that

new value.

Output

x=10

x=20

x=1

x=30

External declaration

9 int main()
{

 y=5;
 . . .
 . . .
}
int y;

func1()
{
 y=y+1
}

• As far as main is concerned, y is not

defined. So compiler will issue an error

message.

• There are two way out at this point

1. Define y before main.

2. Declare y with the storage class extern

in main before using it.

External declaration(examples)
10 int main()

{

 extern int y;

 . . .

 . . .

}

func1()

{

 extern int y;

 . . .

 . . .

}

int y;

Note that extern declaration

does not allocate storage

space for variables

Multifile Programs and extern variables

11

int main()

{

 extern int m;

 int i

 . . .

 . . .

}

function1()

{

 int j;

 . . .

 . . .

}

file1.c

int m;
function2()
{
 int i
 . . .
 . . .
}
function3()
{
 int count;
 . . .
 . . .
}

file2.c

Multifile Programs and extern variables

12

int m;

int main()

{

 int i;

 . . .

 . . .

}

function1()

{

 int j;

 . . .

 . . .

}

file1.c

extern int m;
function2()
{
 int i
 . . .
 . . .
}
function3()
{
 int count;
 . . .
 . . .
}

file2.c

Static Variables

13

 The value of static variables persists until the end of the
program.

 It is declared using the keyword static like

 static int x;

 static float y;

 It may be of external or internal type depending on the
place of there declaration.

 Static variables are initialized only once, when the
program is compiled.

Internal static variable

14

 Are those which are declared inside a function.

 Scope of Internal static variables extend upto the end of

the program in which they are defined.

 Internal static variables are almost same as auto

variable except they remain in existence (alive)

throughout the remainder of the program.

 Internal static variables can be used to retain values

between function calls.

Examples (internal static)

15

 Internal static variable can be used to count the number of calls
made to function. eg.

int main()
{
 int I;
 for(i =1; i<=3; i++)
 stat();
 }
void stat()
{
 static int x=0;
 x = x+1;
 printf(“x = %d\n”,x);
}

Output

x=1

x=2

x=3

External static variables

16

 An external static variable is declared outside of all

functions and is available to all the functions in the

program.

 An external static variable seems similar simple external

variable but their difference is that static external

variable is available only within the file where it is

defined while simple external variable can be accessed

by other files.

Static function

17

 Static declaration can also be used to control the scope

of a function.

 If you want a particular function to be accessible only to

the functions in the file in which it is defined and not to

any function in other files, declare the function to be

static. eg.

 static int power(int x inty)

 {

 . . .

 . . .

 }

Register Variable

18

 These variables are stored in one of the machine’s register
and are declared using register keyword.

 eg. register int count;

 Since register access are much faster than a memory access
keeping frequently accessed variables in the register lead to
faster execution of program.

 Since only few variable can be placed in the register, it is
important to carefully select the variables for this purpose.
However, C will automatically convert register variables into
nonregister variables once the limit is reached.

 Don’t try to declare a global variable as register. Because the
register will be occupied during the lifetime of the program.

